DERIVARE

Def. \(\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) \)

Formule de derivare (formulele de baza)

<table>
<thead>
<tr>
<th>N.</th>
<th>Forma</th>
<th>Exemplu</th>
<th>Regula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>((x^n)' = nx^{n-1})</td>
<td>((x^2)' = 2x); ((x^3)' = 3x^2); ((x^{11})' = 11x^{10}); ((x^{2009})' = 2009x^{2008})</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>(x' = 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>((\text{orice număr}') = 0)</td>
<td>(7' = 0); (25' = 0)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>((\sqrt{x})' = \frac{1}{2\sqrt{x}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>((\cos x)' = -\sin x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>((\sin x)' = \cos x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>((\tan x)' = \frac{1}{\cos^2 x})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>((\cot x)' = -\frac{1}{\sin^2 x})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>((a^x)' = a^x \cdot \ln a); (\text{unde } a > 0)</td>
<td>(2^x' = 2^x \cdot \ln 2); (5^x' = 5^x \cdot \ln 5)</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>((e^x)' = e^x), (\text{unde } e = 2.71)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>((\ln x)' = \frac{1}{x})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>((\log_a x)' = \frac{1}{x \cdot \ln a}); (\text{exemplu: } (\log_3 x)' = \frac{1}{x \cdot \ln 3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>((\arctan x)' = \frac{1}{x^2 + 1})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reguli de derivare

1. \((f + g)' = f' + g'\)
2. \((nr \cdot f)' = nr \cdot f'\)
3. \((f \cdot g)' = f' \cdot g + f \cdot g'\)
4. \(\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}\)

Exemplu:

e1) \(f(x) = x^3 + 3x^2 - 9x + 11 + 4e^x - 2 \ln x + \sqrt{x} + 5^x\). Atunci

\[f'(x) = 3x^2 + 3 \cdot 2x - 9 \cdot 1 + 0 + 4 \cdot e^x - 2 \cdot \frac{1}{x} + \frac{1}{2 \sqrt{x}} + 5^x \cdot \ln 5\]

Am aplicat proprietatile 1 și 2, adică se derivează fiecare separat, fiind adunare sau scădere. Iar numărul din fata funcției nu patește nimic, se derivează doar funcția. \(11' = 0\), pt ca 11 e constantă, fiindcă n-are X.

\[(2 \cdot \ln x)' = 2 \cdot (\ln x)' = 2 \cdot \frac{1}{x}\]
e2) \(f(x) = x^3 \cdot \ln x \)

Folosim pentru a deriva, regula 3, pentru produs: \((f \cdot g)' = f' \cdot g + f \cdot g' \)

Atunci \(f'(x) = (x^3)' \cdot \ln x + x^3 \cdot (\ln x)' = 3x^2 \cdot \ln x + x^3 \cdot \frac{1}{x} = 3x^2 \cdot \ln x + x^2 \)

e3) \(f(x) = x^4 \cdot \cos x \)

Folosim pentru a deriva, regula 3, pentru produs: \((f \cdot g)' = f' \cdot g + f \cdot g' \)

Atunci \(f'(x) = (x^4)' \cdot \cos x + x^4 \cdot (\cos x)' = 4x^3 \cdot \cos x + x^4 \cdot (-\sin x) = 4x^3 \cdot \cos x - x^4 \cdot \sin x \)

E4) \(f(x) = \frac{3x + 1}{x - 1} \)

Folosim pentru a deriva, regula 4, pentru fractie: \(\left(\frac{f}{g} \right)' = \frac{f' \cdot g - f \cdot g'}{g^2} \)

Atunci \(f'(x) = \frac{(3x + 1)' \cdot (x - 1) - (3x + 1) \cdot (x - 1)'}{(x - 1)^2} = \frac{3 \cdot (x - 1) - (3x + 1) \cdot 1}{(x - 1)^2} = \frac{3x - 3x - 1}{(x - 1)^2} = \frac{-4}{(x - 1)^2} \)

E5) \(f(x) = \frac{x^2 + 1}{3x} \)

Folosim pentru a deriva, regula 4, pentru fractie: \(\left(\frac{f}{g} \right)' = \frac{f' \cdot g - f \cdot g'}{g^2} \)

Atunci \(f'(x) = \frac{(x^2 + 1)' \cdot (3x) - (x^2 + 1) \cdot (3x)'}{(3x)^2} = \frac{2x \cdot 3x - (x^2 + 1) \cdot 3}{(3x)^2} = \frac{6x^2 - 3x^2 - 3}{9x^2} = \frac{3x^2 - 3}{9x^2} \)

Pentru a deriva corect o fractie, sunt necesare parantezele, pentru ca tot numarul din paranteza se va inmultii cu derivata celuilalt termen.

Derivate compuse

Def. \((f(ceva))' = f'(ceva) \cdot (ceva)' \)

Ex 1. \(f(x) = \sin(x^2 - 3x + 1) \).
\[f'(x) = \cos(x^2 - 3x + 1) \cdot (2x - 3) \] Intai am derivat prima functie care apare, adica \(\sin \), am copiat paranteza, pt ca este argumentul lui \(\sin \), apoi derivam paranteza

Ex 2. \(f(x) = \sin^4(x^2 - 3x + 1) \).

\[f'(x) = 4 \sin^3(x^2 - 3x + 1) \cdot \cos(x^2 - 3x + 1) \cdot (2x - 3) \]

Intai derivam ca fiind \(\sin^4 \). Apoi derivez \(\sin \), apoi paranteza

Ex 3. \(f(x) = \ln^3(\cos(x^2 - 3x + 1)) \).

\[f'(x) = 3 \ln^2(\cos(x^2 - 3x + 1)) \cdot \frac{1}{(\cos(x^2 - 3x + 1))} \cdot (-\sin(x^2 - 3x + 1)) \cdot (2x - 3) \]

Intai derivez ca fiind \(\sin^4 \), apoi \(\ln \), care este \(\frac{1}{\text{paranteza}} \), apoi \(\cos \) si paranteza.

Ex 4. \(f(x) = (x^2 - 3x + 1)^4 \).

\[f'(x) = 4(x^2 - 3x + 1)^3 \cdot (2x - 3) \]

Intai derivez ca fiind \(x^4 \), pe urma paranteza.